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ABSTRACT 
 
 
 

This thesis sought to design and implement a low-cost, portable, Free-Space Op-

tics (FSO) communications device for Ethernet applications. Under some circumstances 

such a device would have utility at a Combat Operations Center (COC), a Field Artillery 

Position, or wherever else fiber optic cable is used in garrison or field.   The design was 

based on commercial off the shelf components originally designed for fiber optic applica-

tions. Based on a 100-megabits per second (Mbps) media converter, the design used two 

fiber optic transceivers, coupled to collimating lenses to pass data over free-space.  Sus-

tained data rate of 100 Mbps was achieved with full network functionality on an optical 

bench with a low-power (0.5 mW) laser diode transmitter without focusing optics on the 

receiver. The laser diode power (mounted on the transceiver),  was measured with ac-

ceptable losses up to 300 ft during testing using a photodiode with focusing optics.   The 

findings indicate that the system with proper collecting optics could be optimized for 

free-space communication at short to moderate ranges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vi

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



 vii

TABLE OF CONTENTS 
 
 
 

I. INTRODUCTION........................................................................................................1 
A. BACKGROUND ..............................................................................................1 
B. APPROACH.....................................................................................................3 
C. THESIS ORGANIZATION............................................................................3 

II. THEORY ......................................................................................................................5 
A. AN INTRODUCTION TO FREE-SPACE OPTICS....................................5 

1. History and Evolution of FSO ............................................................5 
B.    COMPONENTS OF AN FSO SYSTEM .......................................................6 

1.    Major Subsystems................................................................................6 
a.  Copper Media Input/Output (I/O) ............................................7 
b.  Media Converter........................................................................8 
c.  Laser Transmitter......................................................................9 
d.  Receiver ...................................................................................15 

C. LASER SAFETY ...........................................................................................18 
D. SUMMARY ....................................................................................................18 

III. DESIGN AND TESTING..........................................................................................19 
A. SELECTION OF COMPONENTS..............................................................19 

1. The Media Converter ........................................................................19 
2. Copper Input/Output System ...........................................................23 
3. Laser Diode Driver Circuit ...............................................................23 
4. Receiver System .................................................................................26 

B. USE OF THE MEDIA CONVERTER REFERENCE DESIGN KIT ......27 
1. Modifications to the ML6652RDK...................................................27 

C. SUMMARY ....................................................................................................36 

IV. RESULTS AND CONCLUSIONS ...........................................................................39 
A. RESULTS .......................................................................................................39 
B. RECOMMENDATIONS FOR FURTHER RESEARCH .........................46 

LIST OF REFERENCES......................................................................................................47 

INITIAL DISTRIBUTION LIST .........................................................................................51 
 
 
 
 
 
 
 
 
 
 



 viii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



 ix

LIST OF FIGURES 
 
 
 
Figure 1. Patent for the Photophone filed by Alexander Graham Bell and Charles S. 

Tainter. (From Ref. [8].) ....................................................................................6 
Figure 2. Block diagram of the FSO system. ....................................................................7 
Figure 3. Manchester encoded bit stream 01101001. (After Ref. [11].) ...........................8 
Figure 4. Optical output vs. input current of a typical laser diode. (From Ref. [13].) ....10 
Figure 5. Intensity modulation of a Laser Diode. (From Ref. [13].)...............................11 
Figure 6. Modulation of a Laser Diode at two operating temperatures T1 and T2.  

(After Ref. [13].) ..............................................................................................12 
Figure 7. Atmospheric propagation. Transmission vs. wavelength. (From Ref. [14].) ..13 
Figure 8. Manufacturer’s recommended schematic for a media converter between 

100BaseTX (copper) and 100BaseFX (fiber) based on the ML6652. (From 
Ref. 26].) ..........................................................................................................21 

Figure 9. Micro Linear reference design device for the ML6652 media converter ........22 
Figure 10. Typical application of a copper to fiber Media Converter...............................22 
Figure 11. Proposed schematic for the copper input/output system. (After Ref. [27].) ....24 
Figure 12. Recommended schematic for a driver based on the MAX3263 integrated 

circuit. (From Ref. [28].)..................................................................................25 
Figure 13. Proto-board implementation of diode driver circuit. .......................................25 
Figure 14. Oscilloscope output for LD driver simulation at 150 MHz. ............................26 
Figure 15. Receiver circuit based on Philips Semiconductor parts NE5217 and 

NE5210. (From Ref. [19].) ..............................................................................27 
Figure 16. Two ML6652RDK devices linked with fiber optic cables. .............................28 
Figure 17. Initial attempt at FSO.  Two ML6652 devices shown aligned receiver to 

transmitter. .......................................................................................................29 
Figure 18. The ML6652RDK with the transceiver module removed and a 1x9 pin 

socket added for quick module change............................................................30 
Figure 19. Schematics of 15.29-mm fiber collimation lens. (After Ref. [29].).................33 
Figure 20. Two media converters setup with one fiber link and a free-space link 

through collimation lenses. ..............................................................................34 
Figure 21. Collimation lenses shown connected to the ML6652RDK.  One on left 

connected to the transmitter and the one on right is connected to the 
receiver.............................................................................................................35 

Figure 22. Tripod-mounted transmitter (Left) and photodetector with DVM (Right)......37 
Figure 23. Average file transfer time comparison. Time axis shown in logarithmic 

scale for clarity.................................................................................................40 
Figure 24. Graph of measured voltage vs. distance from transmitter using 

photodetector....................................................................................................41 
Figure 25. Graph of measured I-V characteristics for the InGaAs photodiode. ...............42 
Figure 26. Logarithmic graph of calculated power vs. distance .......................................43 
Figure 27. Custom-designed 1x9 transceivers offered by a manufacturing house in 

response to internet inquiry..............................................................................45 



 x

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xi

LIST OF TABLES 
 
 
 
Table 1. Pinout of the 1x9 transceiver module.  Note that pin number 1 is shown at 

the bottom of Fig. 18........................................................................................30 
Table 2. Voltage measured with a photodiode at 20 ft intervals from the transmitter. 

The power values are calculated, based on the voltage. ..................................44 
 



 xii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xiii

ACKNOWLEDGMENTS 
 

The author whishes to acknowledge the financial support of SPAWAR Systems 

Center San Diego, which made the purchase of equipment and supplies for this project 

possible. 

The author owes a great debt of gratitude to the following individuals for their as-

sistance with the project:  

Prof. Richard Harkins of the Physics Dept. for his interest, encouragement 
and valuable advice.  

Mr. Sam Barone, the Physics Dept. Electronics Technician who mounted 
the miniature circuitry, helped find components for this project and of-
fered advice and assistance throughout.   

Mr. George Jaksha, the Physics Dept. Machinist who crafted the func-
tional mounts for various circuits and was a source of valuable help during 
the entire project. 

Professor Xiaoping Yun, for advice, interest and encouragement through-
out this project.  

The author is deeply indebted to Professor Gamani Karunasiri for his extraordi-

nary support, time and guidance.       

 
 

 



 xiv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xv

EXECUTIVE SUMMARY 
 
 

Free-Space Optics (FSO) in data communication applications is mature technol-

ogy, in successful use all over the world.  There are many limitations to FSO implemen-

tation, mainly due environmental and physical constraints.  Free-Space Optics links re-

quire line of sight and are highly susceptible to degradation due to fog, rain, etc. How-

ever, given favorable conditions and Line-of-Sight (LOS), FSO is an efficient and inex-

pensive alternative to fiber optic cables.  This fact is exploited by a number of companies 

who have emerged as market leaders in this growing niche of the communications indus-

try.  The devices that are presently available commercially are bulky and expensive.  This 

thesis explored the design and implementation of a man-portable FSO device for military 

field use, at applications such as at Marine Corps Combat Operations Centers (COC), 

Field Artillery positions and at antenna farms as an alternative fast link between commu-

nications nodes that would normally need fiber optic cable.  If successfully optimized, 

such a device could prove to be time and money saving alternative in some military 

communications applications.          

Using commercially available parts, a portable FSO device was built, based on a 

100-Mbps media converter chip.  This device successfully established an FSO link over 

free-space under laboratory conditions (on an optical table at a range of 5 ft.) using low 

power and no collection optics.  Normal functionality was observed on all network appli-

cations.  A data rate of 100 Mbps was sustained during all operations.  Tests confirmed 

that the transmitted beam was detectable at a range up to 300 ft, with and without re-

ceiver optics.  It is believed that the device could be optimized with a higher powered 

transmitter, a larger detector along with the incorporation of collimating and focusing op-

tics.   

Further research in optics and transmitter/receiver components is necessary to 

fully realize the benefits of this portable device that has application both in garrison as 

well as in field.      
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I. INTRODUCTION 

The goal of this thesis was to design, implement and test a low-cost, man-

portable, Free-Space Optics (FSO) communication device that may be used to link 

Ethernet based networks or devices in lieu of fiber optic cables in military field applica-

tions.  In particular, the design was aimed to be applicable for use at a Marine Corps 

Combat Operations Center (COC), or a Field Artillery position.  This introductory chap-

ter describes the motivation for this work, and covers the organization of follow-on chap-

ters.      

A. BACKGROUND   
There are many means of linking Ethernet networks or subnets.  Wireless net-

working (WiFi) or the 802.11 standard has been in the forefront of interest in recent 

times, while we continue to use established technology such as fiber optic cable and vari-

ous Unshielded Twisted Pair (UTP) standards. Each method has advantages and draw-

backs, and clearly no one medium is ideal for all applications.  Free-space Optics (FSO) 

is one such means of linking Ethernet nodes.  It is a technology that has gained a niche 

during recent years as a so called last mile solution.  The term “last mile” describes the 

often troublesome means of connecting a Local Area Network (LAN) to a Metropolitan 

Area Net Work (MAN) or connecting a physically separated subnet (or even a single 

host) to a parent LAN efficiently. (See, for example, Refs. [1, 2].)   Fiber optic cable is 

certainly an option, yet is significantly costly to implement for LAN applications, espe-

cially in metropolitan areas. Initial cost of fiber infrastructure could be prohibitively high 

for small or medium sized businesses when connectivity could involve digging or modi-

fying existing structures or roads, requiring secondary construction and permits, which in 

turn usually entail additional delays and cost. (See, for example, Refs. [1, 2, 3].)  Given 

certain constraints, FSO technology is a simple, relatively low-cost alternative to fiber.  

In many short distance applications it is a practical solution, considerably less costly than 

fiber and capable handling high enough data rates to satisfy most applications.  In the au-

thor’s opinion, speed and ease of deployability favors FSO over other media as well.  

During disaster recovery operations such as the aftermath of a natural disaster,  FSO 

technology can be rapidly deployed to restore vital computer links.  However, there are 
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many limitations to the use FSO technology.  Free-Space Optics require line of sight and 

is subject to atmospheric attenuation.  Fog, rain, and other atmospheric conditions affect 

FSO links and limit the link lengths as will be shown elsewhere in this thesis.  Safety 

concerns limit the amount of power that may be deployed in a system.  Even with these 

limitations, FSO is a viable alternative to fiber cable in some applications.  A recent NPS 

thesis compared the suitability of various wireless technologies for Marine Corps field 

command and control entities.  After field testing FSO, Microwave, 802.16 and others, 

the study concluded that, for line of sight (LOS) conditions, FSO is the best suited tech-

nology for Marine Corps needs [4].  

Free-Space Optics technology currently exists commercially and is a growing 

niche market.  There are several companies that exclusively produce FSO linking de-

vices, and offer off-the-shelf as well as custom designed devices to link physically sepa-

rated Ethernet nodes.  Lightpointe Incorporated of San Diego is one such company [4].  

Another prominent name in the FSO business is AirFiber Incorporated, also based in San 

Diego, California. (See,  for example, Refs. [1, 2, 3].)  Lightpointe’s product line offers a 

52-Mbps device that has a range of 5000 meters. The company website claims the de-

ployment of over 2000 FSO devices in 60 countries [5].  Some established names in elec-

tronic communications have also recently entered the fray.  Canon Corporation is an ex-

ample of the latter.  Canon’s high end FSO device is advertised as capable of sustained 

data rates of 1.25 Gbps up to a distance of 1 km.  Other models with lower data rates are 

capable of links up to 2 km [6]. 

These companies sell off-the-self devices or would custom design a system to suit 

a user’s needs. Typically an FSO device is mounted on a rooftop or side of a building.    

Some have advanced self alignment systems built in. (See, for example, Refs. [4, 5, 6].)  

Telephone and email inquiries to various companies suggested that the typical cost of a 

1.25 Gbps link between two buildings separated by 500 meters is about $10,000.                         

This thesis designed and implemented a prototype man-portable FSO system that 

may take the place of a fiber cable to link two nodes of an Ethernet network.  The mili-

tary-grade fiber optic cable in wide use, CX-11230, is costly and bulky.  An 8 ft length of 

the cable is currently priced at about $1200 [7].  In many field applications such as at a 
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battalion size combat operations center or at a field artillery position, high-speed broad-

band data communication is desirable but not always possible due to the constraints of 

time, cost and the logistics (of carrying a bulky reel of fiber to the field.)  The author, 

based on his experience as a field communications officer, believes that a low-cost, port-

able, FSO device has a utility value in a Marine Corps COC or an antenna farm.  Used in 

lieu of fiber cable for fast, limited distance use under some circumstances, such a device 

could enhance communications efficiency.   

B. APPROACH 
Having delved in to the subject during the course of a year, the author believes 

that a system as described above is not commercially available. This thesis will show that 

a viable device could be designed and implemented for less than $1000, and that mass-

produced devices would cost significantly less.   We will show that a man-portable self-

contained device could be designed and constructed using Commercial-Off-The-Shelf 

(COTS) components and that such a device could be optimized for longer distances and 

higher power by careful selection of wavelength, laser power and receiving and transmit-

ting optics.     

C. THESIS ORGANIZATION 
Chapter II covers the theory behind FSO.  We discuss the underlying physics that 

enable us to predict link distances, select the right components and make educated 

choices in such design parameters as power and wavelength.  In this chapter we also dis-

cuss the safety issues that have to be addressed when dealing with any laser device, and 

the international and US regulations that applies to FSO.  

Chapter III details the subsystems and their individual designs.  Each subsystem is 

covered in detail and the design decisions discussed.  We explain the choice of compo-

nents, their individual merits and the reasons for choosing a particular component.   

Chapter IV is a discussion of the results and contains the author’s conclusions.  

Recommendations for further research are covered in this chapter as well.        
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II. THEORY  

This chapter introduces the current status of Free-Space Optics technology. The 

origin of FSO technology and its basic operation will be presented.   Additionally, the ba-

sics behind the types of signals used in Ethernet transmission and the various conversions 

we will apply to signals to make them suitable of free-space transmission is covered.  A 

brief discussion on laser transmitter operating principles and link margin analysis as it 

applies to an FSO system is also included.  This chapter introduces the expected sources 

of loss when a laser beam is transmitted through the atmosphere and the important pa-

rameters of laser diodes and optical receivers.    

A. AN INTRODUCTION TO FREE-SPACE OPTICS 

1. History and Evolution of FSO  
The concept that a light beam could be used as a medium to transmit information 

is hardly new.  None other than Alexander Graham Bell is credited with the idea; Bell 

and Charles Tainter patented a device they called the Photophone in 1880 (Fig. 1.)  By 

using a series of mirrors and lenses, they were able to modulate a voice signal on to a ray 

of sunlight and send it to a receiver 200 meters away [8].  In the Photophone, voice sound 

waves were directed on to a mirror that was used to reflect a beam of sunlight on to a 

similar mirror on a receiver.  Voice sound waves caused this mirror to vibrate, thereby 

varying the intensity of the received ray. The receiver then converted these variations 

back to sound waves reproducing the voice [8].  The modulation scheme used by Bell is 

known as Intensity Modulation or IM. This method lends itself well to today’s digital 

communications where the variations we have to worry about are just two:  one and zero, 

or high and low. (See, for example Ref. [9].)   

Engineers have known since this period that light could be used in this fashion to 

communicate.  Indeed, in the period immediately following the demonstration of the first 

laser in 1960, there were several papers published that called for the exploitation of the 

new technology for space communications [10].  The cost and bulk of early lasers pre-

vented rapid development of FSO technology. Another reason could be the lack of an ob-

vious use outside of military and space applications.  We simply did not have widespread  



  
Figure 1. Patent for the Photophone filed by Alexander Graham Bell and Charles S. Tainter. 

(From Ref. [8].) 
 
computer networks outside of universities, large corporations and the government.  With 

the exponential growth of the internet and extensive use of information systems in the 

late 1980s to present, demand for bandwidth and speed has driven research into methods 

of fast inexpensive modes of data communications.  As a result, FSO technology has 

been rediscovered in recent years as a potential solution for the last mile bottleneck dis-

cussed in the previous chapter. Additionally, advances in laser diode and photodetector 

technologies have made those devices relatively inexpensive and ubiquitous, allowing 

FSO to compete as a viable alternative to fiber both in speed as well as in cost.  The next 

several sections of this chapter, will present the major subsystems of a generalized FSO 

system. 

B.    COMPONENTS OF AN FSO SYSTEM 

1.    Major Subsystems 
Our discussion of theory behind an FSO device is best accomplished by individ-

ual treatment of major subsystems.  Essentially, the system can be thought of as an inter-

face between four components.  These are:  

a) Copper media input/output 

b) Media converter   

c) Laser transmitter 

d) Receiver 

6 



Figure 2 is a block diagram of the system.  We will discuss the functional theory 

of each of these subsystems below. 

a.  Copper Media Input/Output (I/O)   
Unshielded Twisted Pair (UTP) is the most commonly used media today 

for Ethernet transmissions.  The IEEE protocol 802.3, commonly referred to as Ethernet, 

enables either 100 megabits per second (Mbps) or 10 Mbps transmissions of data on two 

or four-wire twisted pair.  The 100-Mbps standard is referred to as 100BASE-TX (two 

wire) or 100BASE-T4 (four wire.)  The FSO device is designed to accept a standard RJ-

45 male jack to connect the UTP cable.  The incoming signal is sent through a 1:1 trans-

former in order to isolate it from the parent network.  The I/O system also contains filters 

to manage the input noise level.  On the output section, the signal is sent through another 

1:1 transformer.  It should be noted that the signals received at the I/O subsystem are 

 

 
Figure 2. Block diagram of the FSO system. 

 

not streams of simple binary digits. Rather, Ethernet packets containing digital data 

transmitted over copper or fiber in Ethernet networks are usually encoded using a scheme 

known as Manchester Encoding or variations of it. (See for example, Ref. [11].)  The rea-

son for this conversion is avoid errors as well as to eliminate the need for a separate clock 

signal.  (See for example, Ref. [11].)  When data is transmitted as simple binary digits, 

i.e., “1”s and “0”s at high-speeds over a network, long sequences of homogenous digits 

7 



could become indistinguishable from one another to a receiving device, thus causing er-

rors at the receiver.   Figure 3 shows a Manchester encoded bit stream along with its rep-

resentative data.   In this scheme there is always a transition at the middle of a bit inter-

val.   A “1” is represented by a downward transition and a “0” is indicated by an upward 

transition.  Since the transition only takes place at the center of the bit interval, a separate 

clock signal is not needed. The receiving device can clock the incoming bits based on 

their transitions. (See for example, Ref. [11].)  Thus, the encoded data signal is now fil-

tered, isolated and then presented to the media converter, which is discussed next.  

8 

Figure 3. 
 

 
0         1          1           0         1          0          0          1  

Original bit stream 

Manchester encoded bit stream 01101001. (After Ref. [11].)  
                

 b.  Media Converter 
The Media Converter (MC) could be thought of as the heart of the design.  

The MC receives the Manchester encoded signal described above and formats it into a 

useful form to modulate the laser beam.  In addition the MC has to be able to sense and 

auto-negotiate the data transfer rate. Since Ethernet nodes essentially communicate, the 

media converter is required to send and receive data at either end.  Thus the MC converts 

the received signals optical signals back to Manchester encoded Ethernet data as well.  

This process of conversions undertaken by the MC may not introduce any asynchronous 

delays between received and transmitted data as most Ethernet protocols are connection 

Manchester encoded bit stream  

Bit boundary 



9 

based, i.e., data packets need to be acknowledged within milliseconds of receipt to avoid 

errors and connection resets. (See for example, Ref. [11].) Ideally, the MC makes the 

presence of the communicator in the communication channel transparent to the two 

nodes.  Output of the MC has to be compatible with the type of signal expected by the la-

ser driver.  The laser diode driver chosen for this project accepts a signal form known as 

PECL or Positive Emitter Coupled Logic.  Of the several signal schemes in wide use for 

high-speed data transmission interface betweens Integrated Circuits (ICs), PECL is the 

most common [12].  Other signal forms include LVDS  (low-voltage differential signals), 

TTL (transistor-transistor logic), and CML (current mode logic) [12].  Since PECL uses a 

small swing in voltage to differentiate between logic levels and is able to use a positive 

power supply, it is ideally suited for serial or parallel transmission of data between ICs 

[12].  Indeed, whether the communicator interface is LVDS, CML or PECL was an early 

design decision that had to be made, as components are usually optimized/designed for a 

given type of signaling.  The choice of PECL over other forms was one of the easier de-

sign decisions, due to the availability of a wide variety of low-cost PECL components.  

The output of the MC, a converted PECL signal, is next applied to the input of the laser 

diode driver, which will be discussed next.   

c.  Laser Transmitter 
The laser transmitter consists of the laser driver and a laser diode.  In order 

to convert the electrical signals that carry Ethernet data over copper wires to light signals 

that may be transmitted over free-space, it is necessary to modulate a laser beam to repre-

sent the data.  The transmitter device used was a Laser Diode (LD), also referred to as a 

semiconductor laser. We opted to use an LD rather than a Light Emitting Diode (LED) 

due to several reasons.  Chief among these was the higher modulation bandwidth of an 

LD, which enabled us to use a higher powered source at the desired bit rate. (See for ex-

ample Ref. [1].)   

A laser diode emits relatively high intensity light beam beyond a certain 

threshold input current through the device, which is intrinsic to a given diode for a given 

operating temperature T.  Figure 4 depicts the two curves of light output of a typical laser 

diode versus input current at two different temperatures T1 and T2 (where T1 < T2).  No-



tice that thI , the threshold current is shifted right with the higher temperature.  The thresh-

old thI  as a function temperature is given by [13] 

 /
0( ) IT T

th II T I K e= +  (2.1) 

where thI , , and are specific to a given laser diode.  Above this threshold, the op-

tical power of the LD increases linearly as shown in Fig. 4.   

IK IT

 

 
 

Figure 4. Optical output vs. input current of a typical laser diode. (From Ref. [13].)   
 

 Dependent on the slope of the curve of the optical output vs. input current, 

a small variation in the input current results in a larger change in the optical output of a 

laser diode [13].  This very useful property of the LD is commonly exploited to transmit 

data on the laser beam.  The process works as follows.  A biasing current maintains the 

LD slightly above or very close to the laser threshold.  When a logic “1” is transmitted 

the bias current is increased momentarily.  Similarly a “0” is transmitted by maintaining 

the rest current level or increasing input current just above rest state, yet not up to the 

point when it would be read as logic “1”.   

 There are several established modulating methods used in communication 

engineering today.  Intensity Modulation (IM) was described in general terms above and 
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depicted in Fig. 5.  Some other popular modulation schemes are Frequency Shift Keying 

(FSK), Amplitude Shift keying (ASK) and Phase Shift Keying (PSK). The intrinsic prop-

erties of each scheme determine its suitability for a given application.  Intensity modula-

tion, also known as On-Off-Keying (OOK) lends itself well to digital data modulation in 

optical networks.  Most fiber optic data transfer technologies use OOK as their modula-

tion scheme. 

 

 
Figure 5. Intensity modulation of a Laser Diode. (From Ref. [13].)    

 

 The term Slope efficiency (S), describes the behavior of the slope with 

temperature. For a given LD, and a temperature T, the slope efficiency is given by [13] 

 /
0( ) sT T

sS T S K e= −  (2.2) 

where ,  and  are specific to the laser diode.  For efficient modulation, high slope 

efficiency is beneficial.  Figure 6 shows the case of an LD that has diminished slope effi-

ciency at a higher temperature T

0S SK ST

2.  Note that if we maintain the modulation current IMod 

constant with rising temperature, the modulated signal greatly decreases in amplitude.  

Figure 6 is deliberately exaggerated for clarity.   It follows then, that the modulation pa-

11 



rameters need to be dynamically adjusted with temperature, and/or any changes to Ith. In 

order to successfully maintain an FSO data link, the LD driver needs to be sophisticated 

enough to track changes to threshold current and slope efficiency and adjust its bias and 

modulation current correspondingly [13].  Most high quality LDs have embedded moni-

tor photodiodes that are designed to provide feed back to the driver.  The LD driver uses 

this feedback current to track the output and change its parameters.  For these reasons, the 

laser driver and the LD have to carefully match to optimize the performance of the FSO 

device [13].  There are several key parameters of the LD that have to be considered dur-

ing the design process.  Foremost among these are the wavelength (λ) and the optical 

power output (Po) of the diode.  Other parameters that need to be weighed are the rise and 

fall times (tr  and tf), operating temperature and the parameters of the monitor photodiode. 

We will discuss these in greater detail next.   

 

12 

Figure 6. Modulation of a Laser Diode at two operating temperatures T1 and T2.  (After 
Ref. [13].)  

 

 As we mentioned in the previous chapter, FSO technology is handicapped 

by atmospheric attenuation to a great degree.  Some wavelengths are more susceptible to 

attenuation and scattering than others. (See, for example, Refs. [3, 14].)  Figure 7 depicts 
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four graphs of the transmission vs. wavelength for a model transmission path of 1 km 

[14].  The topmost panel of the graph shows the theoretical absorption due to water vapor 

in the atmosphere alone, under foggy conditions with visibility at 200 meters.  The y-axis 

ranges from a minimum transmission of zero (maximum absorption) to maximum trans-

mission of one (minimum absorption.) Note that some wavelengths are affected more se-

verely than others. Similarly, the second panel shows absorption due to atmospheric 
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Figure 7. Atmospheric propagation. Transmission vs. wavelength. (From Ref. [14].) 

 

oxygen and carbon dioxide for the same wavelengths. It can be seen that the effects are 

far less marked and confined to few narrow wavelength bands.  The third panel shows the 

effects of Mie scattering due to fine water droplets that is advection fog.  The entire spec-

trum of interest is significantly attenuated by the heavy fog.  We may conclude that our 

FSO link will not be effective under these conditions. Finally the bottommost panel de-

picts the effects of all three forms of loss: absorption, Mie scattering, and molecular scat-



tering on one graph.  The y-axis scale is changed for this graph.  We see that there are 

certain wavelengths to be avoided in our selection of an LD [14].  In fact, due to the 

ubiquity of LDs of certain widely used wavelengths, the wavelength selection process 

becomes less daunting than it seems.   

 The optical power output of the diode is a critical design parameter as 

well.  Indeed, the LD power, Po, is one of few variables that a designer may control in the 

FSO link equation given below [14].  

 2 exp( )
( )

reciver
received o

AP P
R

Rα
θ

= −  (2.3) 

where  Precived is the power received at a distant point, P0, is the power output of the 

transmitter,  Areciver is the area of the receiver, θ is beam divergence in radiance,  R is the 

range between the receiver and the transmitter, and  α is the atmospheric attenuation coef-

ficient.  This equation is based on Beers’s law which tells us that light traveling trough 

the atmosphere will attenuate as [5]:    

 exp( )R oI I Rα= −  (2.4) 

where IR and IO are intensities of received and transmitted light.  The atmospheric at-

tenuation constant α is obtained by summing together four components 

 m a m aα α α β β= + + +  (2.5) 

where αm and αa are molecular and aerosol scattering coefficients and βm and βa are mo-

lecular and aerosol absorption coefficients [Ref. 1, p. 49] . 

 In Eq. 2.3, we have chosen to ignore the optical efficiency of both receiver 

and transmitter. Note that the power of the LD is one factor that can contribute to en-

hanced range. (Here we shall define range as the distance at which the least acceptable 

power is received by the detector.) However, due to safety concerns the output of a laser 

diode is a tightly controlled parameter. (The laser safety section of this thesis will treat 

this subject in more detail.)  When α is significant, the exponential term dominates, and 

the received power decreases rapidly with distance.  A greater output, under the right cir-

14 
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cumstances, could translate into longer range for the FSO system.  However, due to 

safety and cost issues, the power output of the LD for this design is deliberately held low.  

 In addition to the wavelength and the power output, the rise and fall times 

of the LD need to be carefully chosen to accommodate the goal bit rate of Fast Ethernet, 

or 100 Mbps.  Rise time refers to the time taken for the LD to increase its intensity from a 

10% of the peak to 90% of the peak (some manufactures specify this value as the time to 

go from 20% to 80%.)  Similarly, the fall time is the time required for the signal to fall 

from 90% of its peak to 10% of the peak.  For fast Ethernet standards, we need rise fall 

times of the LD to be typically around 3 ns. (See, for example, Refs. [15, 16].)    

   Thus far we have covered the conversion process of Manchester-encoded 

Ethernet data to optical signals, and the laser driver and the diode which complete the 

process by transmitting the converted optical signals through free-space.  To close the 

data link, we need to receive the optical signal at a distant point, interpret the modulated 

information or data, and convert these to electrical signals and finally to Manchester en-

coded data suitable for transmission on copper UTP cable.  The next subsection intro-

duces the receiver system that is the first step to this process.     

                                                   
d.  Receiver 
The receiver subsystem comprises of a photodiode, a transimpedance am-

plifier (TIA) and a limiting amplifier.  Each of these components will be covered in gen-

eral terms.  Vital parameters for design will be discussed in sufficient detail to give the 

overall functionality of the receiver.   

The optical detector is a device that responds to light intensity by produc-

ing an electrical current or voltage.  Detectors vary widely in size, sensitivity to a particu-

lar wavelength of light, responsivity (a parameter defined as the amount of current or 

voltage produced in response to a 1 Watt of power at a given wavelength ) and the mate-

rial they are made of (which generally determines the sensitivity to a particular wave-

length.)  The most commonly used photodetectors for high speed communication applica-

tions are the Positive Intrinsic Negative (PIN) photodiodes.  Another more costly, yet a 

higher performing alternative is the Avalanche Photo-Diode (APD.)  An APD is more 



sensitive than a PIN diodes and requires higher biasing voltages. (See, for example, Ref. 

[1].)  Generally they are not used in small devices that have limited power supplies.  The 

PIN diodes are made either with Silicon (Si) or other combinations of material such as 

the popular Indium-Gallium-Arsenide (InGaAs), which responds well in the IR and near-

IR spectrums.  (See,  for example Ref. [1].)  Silicon diodes are usually meant for the visi-

ble and near-IR portions of the spectrum.   

The detector has to be fast enough to distinguish between ones and zeros 

in the optical signal received.  Inadequate response will cause a condition referred to as 

Inter-Symbol Interference (ISI) where adjacent bits become indistinguishable.  Inter-

symbol interference can also be caused by excessive noise [17].  

Recall that the variable  in the FSO link equation (Eq. 2.3) refers to 

the size of the detector.  This is important as a larger detector can capture more of the in-

cident light on it.  Beam divergence causes the effective radius of the light beam to in-

crease as it travels longer distances.  The effective radius is the distance from the center 

of the beam to a point where the intensity has diminished by a factor of 1/ [17].  It fol-

lows then that a lager detector can capture more of the laser beam at longer distances.  

Unfortunately in practice larger detectors cause unacceptably large RC time constants 

due to their larger internal capacitance. For high speed applications, it is unusual to find 

suitable detectors larger than 100 µm in diameter (see, for example, Refs. [17, 18].)   Fi-

nally, the detector has to be sensitive enough to detect relatively low power signals.  The 

minimum detectable power used for quantifying the sensitivity of a photodiode, is given 

in terms of dBm.  A typical value for a fiber optic receiver is about 

receiverA

e

−30 dBm. (See, for 

example, Ref. [14].)  A receiver with this sensitivity would be able to detect a signal 

whose power has attenuated to a mere 1.9 µW.  Another figure-of-merit used to evaluate 

the performance of a detector is the NEP (Noise Equivalent Power).  Noise equivalent 

power is usually given in Watts (W) or mW, and is defined as the radiant power that pro-

duces a signal-to-noise ratio (SNR) of 1, for a given signaling rate, wavelength and noise 

bandwidth [19].      
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The transimpedance amplifier or the TIA receives the electrical current 

produced by the detector in response to a light signal. The output of the TIA is a differen-



tial voltage usually with a peak-to-peak swing less than one Volt. The TIA parameters of 

bandwidth and dynamic range are critical to the proper operation of the receiver system.  

The bandwidth of the amplifier is derived from its input resistance and capacitance.  The 

dynamic range of the amplifier is the ratio of maximum input current to the peak noise 

current [17].   At first glance, the TIA appears to be no more than a low noise preampli-

fier.  However, it does more than simply convert the detector output. (See, for example 

Ref. [20].)  In actuality, the TIA is perhaps the most complex of the subsystems in the 

FSO communicator design.  A multitude of factors can affect its operation.  Such vari-

ables as the size of the feedback resistor, source capacitance, feedback capacitance, band-

width, and desired gain, all interact to make the task of optimizing a TIA an extremely 

complex undertaking [20].  Fortunately, TIAs are available for purchase in packaged 

form for a given set of parameters.  Due to size-related capacitance issues similar to those 

we discussed regarding detectors, TIAs come in extremely small packages as well.  For 

high-speed applications the TIA is embedded in the detector to minimize transmission 

path lengths.   

The output of the TIA is received at the final stage of the receiver system, 

the limiting amplifier.  The function of the limiting amplifier is to quantize the differen-

tial voltage at its inputs to a form of signal that is clearly distinguishable as a data signal.  

Thus the limiting amplifier has to make a decision if the instantaneous value that is being 

sampled is indeed a one or a zero.  Excessive noise at this stage leads to bit-errors.  Addi-

tionally the limiting amplifier has a gain of about 50 to 65 dB. (See, for example, Refs. 

[22, 23].  It is required to amplify a differential signal that could be as low in amplitude 

as 2 mV peak-to-peak to a TTL or PECL voltage (usually Vcc−2V.) The typical limiting 

amplifier consists of several internal gain stages and is designed to minimize noise, de-

lays and internal capacitance compatible with PECL, CML, TTL or a combination of 

these signaling schemes.  Manufactures such as Philips Semiconductor and Maxim-

Dallas make matched pairs of TIA and limiting amplifiers, usually for a desired bit rate, 

signaling scheme and voltage. (See for example Refs. [22-24].) 
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C. LASER SAFETY 
We will briefly discuss laser safety as it applies to this project.  Laser safety is a 

widely researched subject and the potential eye hazards from a laser beam are well under-

stood.  Laser classifications are regulated by an international body, the International Elec-

tro- Technical Commission (IEC) and, in the US, the Center for Devices and Radio-

logical Health (CDRH), a part of the Food and Drug Administration.  While the classifi-

cations used to differ slightly in their definitions according each body, they have been 

unified since 2001 [Ref. 1, pp 139-146].  There are two classes of lasers that we could 

have used during this project.  These are IEC/CDRH Class I and Class IM. Since the pro-

ject involved buying and using modular devices, the manufactures classification was ad-

hered to and the required safety precautions taken during the testing.  All devices used 

were rated as Class I laser products. Under this classification, a power density of up to 26 

mW/cm2 is safe for a 1500 nm laser. Since the project used 1310 nm lasers exclusively, 

the maximum safe power density would be somewhat lower.  However the maximum 

power of any laser used during this research was under 5 mW at 1310 nm and the major-

ity of the work was done with 0.3 to 1 mW rated devices.  At 1500 nm,  a Class I device 

has to be under 10 mW as measured with a power meter through a 7 mm aperture placed 

14 mm away from the source.  If using optics, the aperture size has to be 25 mm at 2000 

mm from the source.  The devices being used were well below these thresholds and no 

extraordinary precautions were therefore employed during this project.  By definition, 

Class I lasers are “safe under reasonably foreseeable conditions for operations, including 

the use of optical instruments for intrabeam viewing” [Ref. 1, pg 141].              

D. SUMMARY 

In this chapter, the history of FSO which is believed to date back to the patent for 

the photophone was discussed along with the reasons for renewed interest in the technol-

ogy.  The major subsections of a theoretical FSO communicator, the copper media in-

put/output system, the media converter system, the transmitter system and the receiver 

system were discussed with relevant theory behind each.  Finally, laser safety issues were 

covered briefly as they pertain to the project.  The following chapter covers the design 

and testing of the FSO device in detail.     
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III. DESIGN AND TESTING 

In this chapter, the design and testing process will be covered in detail, with em-

phasis on design decisions on performance, and component selection criteria. We will 

discuss the reasoning behind the selection of main components and the problems encoun-

tered and the steps taken to overcome them.     

A. SELECTION OF COMPONENTS 
Even from cursory research into component parameters and prices at the inception 

of this project, it became very clear that the mass-produced components aimed at the fi-

ber optic industry were freely available and inexpensive.  That knowledge prompted an 

effort to keep the design parameters as close to existing fiber-optic standards as possible 

to minimize cost and supply delays during the research.  As an example, consider the de-

sired data rate, the Fast Ethernet standard of 100 Mbps.  The Synchronous Optical Net-

work Transport System (SONET) standard OC-3 is rated at 155 Mbps. (See, for example, 

Ref. [1].)  Therefore any component meant for OC-3 devices conveniently exceeds the 

data rate standard we wish to meet.  Similarly, there are two very common DC voltages 

used in the industry as the source voltages of ICs and other components such as LEDs 

and LDs, 3.3 V and 5 V.  Our choice here was 5 V, due to this being the more popular 

choice at the moment for older OC-3 components, and hence the more economical one.  

The final design decision prior to the component selection step was to establish the sig-

naling scheme between the options of  PECL, ECL, and CML.  Here PECL was an easy 

choice due to wider use, which again translates into lower cost and wide availability.    

Thus having determined the design data rate, power-supply voltage, and the sig-

naling scheme, the next logical step was to select a media converter that fell within those 

parameters. Indeed, the plan was to build the FSO communicator around the chosen me-

dia converter IC.    

1. The Media Converter 
The media converters considered were from well known manufactures, and price 

and availability narrowed the list down to a few, which were closely looked at. Of these, 

the Micro Linear ML6652 media converter chip was finally chosen as it had excellent 
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support documentation, a competitive price, and application notes that included a rec-

ommended circuit for a media converter from copper to fiber-based Fast Ethernet 

(100BaseFX.)  This circuit, shown in Fig. 8, could be easily tailored to suit our goal.  Ad-

ditionally, the ML6652 has an auto-negotiation feature that senses the data speed and 

steps between two rates, 10 and 100 Mbps [25].   

The original approach was to build the entire device on a protoboard.  This task 

was undertaken with misgivings, given the vulnerability to noise, interference and para-

sitic capacitance of the board for a system expected to operate at roughly 100 MHz.  The 

author visited the manufacturer’s design facilities in San Jose to confer with an engineer 

on the design team of the ML6652 media converter, and was shown a reference design kit 

that was developed by the company based on the recommended circuit in Fig. 8 for fiber 

optics-based communication links.   The author was given a demonstration of the per-

formance of the reference design (ML6652RDK) at the Micro Linear lab and realized 

that this pre-fabricated device could be modified to fit the basic prototype that was being 

considered.  An obvious advantage was that the reference design was already tested and 

optimized to work as a media converter between fiber and copper.   

Figure 9 shows the ML6652RDK as offered by Micro Linear Corporation.   The 

rectangular device reference designated “A” is a fiber-optic transceiver.  It is a modular 

component with an embedded Transmitter Optical Sub-Assembly (TOSA) and a Receiver 

Optical Sub-Assembly (ROSA.)  The terms TOSA and ROSA are used to indicate modu-

lar integrated components, such as the TIA and detector in one assembly in the case of 

the receiver, and the diode driver and LD or LED in one assembly in the transmitter.  The 

transceiver shown in Fig. 9 is a low-power device made by Agilent Technologies.  It is 

equipped to accept two fiber optic cables, one each for receive and transmit.  The trans-

mit cable of one device needs to be connected to the receiver of the other, and vice versa.   

This device is connected to the rest of the circuit via an industry standard pin-out scheme 

known as 1X9.  The ML6652 integrated circuit is indicated by the reference designator 

“B”,  is while “C” indicates the female RJ45 connector that would accept the incoming 

copper UTP cable.  Figure 10 shows a typical application for the media converter.  



 
Figure 8. Manufacturer’s recommended schematic for a media converter between 
100BaseTX (copper) and 100BaseFX (fiber) based on the ML6652. (From Ref. 26].) 
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Figure 9.   Micro Linear reference design device for the ML6652 media converter 

 

  

 
Figure 10. Typical application of a copper to fiber Media Converter. 

    

Standard Cat-5 UTP cable connects an Ethernet hub to the media converter, 

which converts the electrical signals to optical signals, and transmits these optical signals 

via fiber optic cable to another media converter. Here the process is reversed, and the 

light signals are converted back to electrical signals, and transmitted via UTP cable to a 
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workstation, hub or a router. Note that this scheme may also be used to connect two 

workstations in a peer- to-peer network, or a networked printer to a hub.  The most com-

mon application for the type of media converter described above is to extend the range of 

a LAN beyond the range limitations of UTP cable.  

In the introductory chapter it was stated that the premise of this thesis was that a 

low-cost man-portable FSO device could be designed to take the place of fiber under 

some circumstance.  In essence, this proposed device would have all the characteristics of 

the link shown in Fig. 10, sans the fiber cable.  Hence one of the design strategies was to 

find a way to practically modify this functional media converter circuit to suit our goals. 

The other approach was to build discrete subsystems and use the media converter 

as the processor of the device. We attempted the latter during the initial stages of the pro-

ject, to explore the feasibility of assembling the subsystem using discrete components on 

a protoboard as described in the following sections.   

 

2. Copper Input/Output System 

The Copper Input/Output system was the least complicated design of the entire 

project.  The system comprises of a two transformers, a few capacitors for filtering noise, 

and a female RJ-45 connector.  The transformers are freely available and very inexpen-

sive.  The decision was made to purchase a device manufactured by Pulse Inc, model 

H1012, which is an integrated circuit containing two transformers.  Note that the trans-

formers simply isolate the network from devices that plug-in to it. (See Chapter II.B.1.a.) 

The manufacturer’s recommended circuit was used to build the device on a proto-board.  

This circuit is shown in Fig. 11 [27].  Testing of the circuit was a trivial process, consist-

ing of observing input and output on an oscilloscope and verifying that a 150-MHz 

square wave input on pins 3 and 6 of the RJ-45 connector were reproduced on pins Tx+ 

and Tx-, and that the same wave form input on pins Rx+ and Rx−  could be seen on pins 

1and 2. 

3. Laser Diode Driver Circuit 
In the previous chapter we discussed the important parameters of an LD and the 

LD driver.  The search for a suitable driver started with querying major manufacturers 
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such as Micrel,  Philips Semiconductor and Maxim-Dallas.   The device ultimately cho-

sen was a Maxim3263 integrated LD driver. It was competitively priced, had excellent 

support and was available for purchase in small quantities.  This last criterion was some-

times a critical issue, when suppliers refused to sell small quantities of an item and sam-

ples were not offered by the manufacturer. The MAX3263 is rated at 155 Mbps, PECL 

compatible and needs a +5-V supply source. Some of the driver’s parameters are pro-

grammable using external resistors and capacitors.  The circuit recommended by the 

manufacturer is shown in Fig. 12 [28].  This circuit was built on a proto-board as depicted 

on Fig. 13, and tested on an oscilloscope with a simulated PECL input signal.   As shown 

on Fig. 14, the output waveform was noisy and somewhat distorted.   It did however, 

seem to follow the input waveform closely.  The diminished amplitude of the output is 

due to the 50 Ω  load placed on the output to simulate the actual LD.  The noise and the 

ringing could be attributed to the poor noise immunity offered by the protoboard at the 

desired frequencies.  

  

Rx+ 

Rx- 

Tx+ 

Tx
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Figure 11. Proposed schematic for the copper input/output system. (After Ref. [27].)  
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Figure 12. Recommended schematic for a driver based on the MAX3263 integrated circuit. 
(From Ref. [28].) 

  

 
Figure 13. Proto-board implementation of diode driver circuit.   

 



 

Simulated 
PECL in-
put 

Diode Driver 
Output with 50 
Ω  load 

 
Figure 14. Oscilloscope output for LD driver simulation at 150 MHz. 

 
 

4. Receiver System 
The receiver proved to be the most difficult to build.  Having gone through the 

same selection process as with other components, it was decided to use a TIA and limit-

ing amplifier pair (see previous chapter for a complete discussion on TIAs and limiting 

amplifiers) manufactured by Phillips Semiconductor Corporation. These were the 

NE5211 TIA and the NE5217 limiting amplifier.  One of the unanticipated difficulties 

encountered during this stage was the diminutive size of components. As discussed pre-

viously, TIAs and even limiting amplifiers are manufactured relatively small to avoid 

some performance impeding effects of size related capacitance.  During the selection 

process it was evident that some of the components that were otherwise suitable for the 

application were too small to handle without specialized equipment.  This was especially 

true of TIAs.  The two components finally selected did not have the best parameters.  In 

fact, the signaling used by the Phillips components was TTL rather than PECL, forcing 

the use of a TTL-to-PECL converter between the output and the media converter.  The 

two components were recommended to be used together by the manufacturer in the cir-

cuit shown in Fig. 15 [21]. The signal conversion was accomplished with a Fairchild 

Semiconductors 00391 TTL-to-PECL translator.  This circuit proved to be unworkable 
26 



due to excessive oscillations and noise.  It became clear that a detector with an embedded 

TIA was necessary to overcome noise.   
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Figure 15. Receiver circuit based on Philips Semiconductor parts NE5217 and NE5210. 
(From Ref. [19].) 

 

B. USE OF THE MEDIA CONVERTER REFERENCE DESIGN KIT 

1. Modifications to the ML6652RDK 
The above results were not encouraging as it was evident that noise and the prob-

lems caused by diminutive components were formidable obstacles to building a testable 

prototype.  It was decided to try a new approach using commercially available media 

converter design kits originally fabrication for fiber links.  Two ML6652RDK media 

converter reference design kits (see Section A.1) were purchased with the aim of modify-

ing them to transmit and receive over free-space rather than over their intended medium, 

i.e., fiber-optic cable.  The transceiver modules were equipped with SC-type connectors. 

These SC connectors surrounded an LED in the case of the transmitter side of the trans-



ceiver or a photodiode in the case of the receiver side.  On the test bench, a computer was 

setup as depicted on Fig. 10. The UTP cable from one of the media converters was con-

nected to an Ethernet port in the laboratory, while the other led to a laptop computer con-

figured to be on the NPS network.   

Figure 16 shows the actual setup with fiber optic cables connecting the two de-

vices.  The device on the left is connected to a wall port and the one on the right is con-

nected to a laptop computer.  The system worked as expected, at 100 Mbps according to 

the connection properties, and normal browsing, email and other network services all 

functioned normally.  Thus the baseline for performance was set as normal Ethernet func-

tionality, at 100 Mbps from a standard wall port.  The next step was to attempt FSO 

transmission at extremely close range, to see if the transmitter (the LED in the Agilent 

device) was able to send data over free-space to a receiver a few centimeters in front of it.   

 
Figure 16. Two ML6652RDK devices linked with fiber optic cables.    

 

The two media converters were lined up as shown in Fig. 17 and powered up.  

This did not have the expected results, even when the two devices were mated against 

each other.   This should have worked in theory, as the setup worked when fiber was 

connecting the Tx and Rx of each device.  When the fiber is connected as shown in Fig. 

16, the tip of the fiber is held a few micrometers in front of an LED by the pre-aligned SC 

connector, at a point where vast majority of the LED’s power would transfer into the fi-

ber.  The light then travels through the fiber and emits out the other end, which is again 

held a predetermined, microscopic distance away from a photo-detector by another SC 

connector.  In order for the setup depicted in Fig. 17 to work, the following had to hold 

true:  
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1. The light beam emitted from the transmitter is sufficiently collimated, i.e., 
able to focus sufficient power to be detected by the receiver that is placed 
in front of it.   

2. The receiver sensitivity is sufficient to detect the beam emitted by the 
transmitter.   

3. The alignment between the receiver/transmitter pair is true. 

4.     That the above conditions are true for both paths.   
 
 

 
Figure 17. Initial attempt at FSO.  Two ML6652 devices shown aligned receiver to transmit-

ter.  
 

Note that the ML6652RDK is equipped with an Agilent HFBR-5103 transceiver 

module as shown in Figs. 16 and 17.  This unit operates at a wavelength of 1300 nm and 

is rated at a maximum power output of –14 dBm or about 0.04 mW [16]. The failure of 

the experiment was thought to be due to the very low power output of the LED. Hence it 

was decided to replace the entire transceiver module with a higher powered LD-based 

unit.  The plan was to remove the modular 1x9 pin device carefully and solder in a 1x9 

socket, enabling us to plug-in experimental devices, or easily access the output /input 

data lines of the media converter IC.  Figure 18 shows the ML6652RDK after the trans-

ceiver module had been removed and the socket soldered on. The 1x9 pin transceiver is a 

common component and comes in a variety of power levels and qualities.  The pinout of 

the 1x9 module is given in Table 1.   At this point various transceiver models were con-

sidered as a replacement. The transceiver had to be equipped with an LD rather than an  
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Figure 18. The ML6652RDK with the transceiver module removed and a 1x9 pin socket 
added for quick module change. 

 

 

Pin 

number 

Designation 

1 Vee(receiver) 

2 Receive data + 

3 Receive data - 

4 Signal Detect 

5 Vcc(receiver) 

6 Vcc(transmitter) 

7 Transmit data - 

8 Transmit data + 

9 Vee(transmitter) 

Table 1.   Pinout of the 1x9 transceiver module.  Note that pin number 1 is 
shown at the bottom of Fig. 18. 
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LED to test the hypothesis that an LD had a sufficiently cohesive beam to reach a re-

ceiver few centimeters away from it.  Preferably a device with an output power of about 

5mW would best suit the testing we had planned.  It was found that the highest powered 

COTS 1x9 transceivers were made with a maximum power of around 1mW and most had 



an average power rating of around –5 dBm or 0.3mW.  The device ultimately chosen (for 

availability as much as for matching specs) was a manufactured by Lasermate Inc. Its ab-

solute maximum power was 0 dBm (1mW) and the typical output was expected to be 

around 3 dBm (0.5 mW.) Two devices were purchased and the testing begun.As a first 

step, the setup shown in Fig. 16 was established, complete with fiber optic cable to ensure 

that the ML6652RDKs did function with the modifications, i.e., with the plugged-in 

transceivers rather than those originally built-in to the devices.  The system worked per-

fectly, reporting a 100-Mbps connection (according to the speed of connection reported 

by the Windows tray icon for LAN connection) when the devices were powered up.  

−

At this stage we sought to establish a benchmark to compare with future results. A 

shared folder was created on a desktop computer that was connected to the NPS network 

via the traditional means, i.e., a UTP cable to a wall Ethernet port.  Using a laptop also 

connected to the NPS network, by the same means, a very large file (151MB) was trans-

ferred to the shared folder from the laptop.  This transfer was timed and repeated three 

more times, so an average time may be obtained for the transfer over a conventional LAN 

connection. This procedure was repeated for a 12.1-MB pdf file and a 6.87-MB doc file. 

These files were deliberately chosen to be larger than what we typically deal with, in or-

der to lengthen transfer times (for more accurate time measurements) and to detect any 

intermittent discontinuities in the link when the tests are repeated for the FSO link.  Next, 

the same files were transferred with the laptop now connected as seen on Figs. 10 and 16 

through the fiber connection. 

Having thus established a baseline set of data on desired data speeds, the fiber op-

tic cables were removed and the two modified ML6652 devices were lined up as shown 

on Fig. 17.  This produced the hoped-for results.  The link lights on the devices and the 

Windows tray icon on the laptop confirmed a 100-Mbps connection over free-space, al-

beit just 5-mm of free-pace. This distance could be extended to 4 inches before the link 

failed.  This result confirmed that the basic circuitry and the concept were sound, and that 

a low-power device could be used to pass data over free-space. 

As encouraging as these results were, without spanning greater distances the 

premise that a small FSO device could be used in military applications was a long way 
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from being proven.  Now the work began in earnest to establish a longer link.  It should 

be noted that the diameter of the receiver (photodiode) in a 1x9 transceiver is roughly 75 

µm. (See for example, Refs. [15,16].)  In essence, when we place a receiver this size in 

the path of a uncollimated laser beam, we are hoping to capture only a small percentage 

of the power of the laser.  It follows then that we need a larger receiver or very finely col-

limated laser beam to get better performance.   

The two ML6652RDK devices were carefully separated while maintaining align-

ment to ascertain the spatial limits of the link. It was established that the link could not be 

maintained beyond roughly 6 cm of separation (from transceiver edge to transceiver 

edge.)  The LD, while emitting reasonable power (we know this from the specs) was not 

emitting a collimated beam. This was confirmed by placing a graph paper 10 cm in front 

of the transceiver and using an IR viewer to ascertain the size of the beam.  This experi-

ment showed that the beam spread widely with distance, as expected.  The beam meas-

ured roughly 10~12 cm in diameter at just 10 cm away from the transceiver edge, and 

continued to spread with increased distance.  This was not unexpected.  The transceiver is 

designed to accept a multimode or single-mode fiber.  As designed, it requires neither 

collection optics on the receiver, nor beam-shaping optics on the transmitter to function 

as intended. In order to successfully design a FSO device with these transceivers, some 

means of incorporating optics into the design had to be discovered.  Before progressing 

further, some data on file transfer rates was collected, as outlined above, with the FSO 

link at its maximum possible separation.  This data is discussed in Chapter IV.  

Given the compact design of the transceiver, there was no straightforward means 

of using optics to achieve efficient collimation and collection.  As this required signifi-

cant structural engineering, another approach was considered.  This method called for a 

collimation lens connected to a fiber optic cable to be used to collimate the laser beam, 

and another collimation lens, again coupled to a fiber, be used to receive the collimated 

beam.  The collimation lenses had to be specialized for a given wavelength, and precisely 

manufactured to efficiently couple most of the light back and forth from the miniscule fi-

ber tip.  Suitable lenses were located and purchased to conduct the next phase of the ex-

periment.            



Three sets of collimation lenses were tested.  They were of focal lengths 15.2 mm, 

11.4 mm and 4.5 mm.  The lens specifications claimed beam diameters of 6.2 mm, 2.74 

mm and 3.8 mm respectively for the above focal lengths.  Lenses could be connected to a 

fiber optic cable via an FC type connector.  In theory, the collimator is designed so that, 

when the fiber is seated in the housing, the fiber tip is precisely at the focus of the lens as 

shown on Fig. 19 [29].  
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Figure 19.
 

Coated lens 

 Schematics of 15.29-mm fiber collimation lens. (After Ref. [29].) 
 

In order to facilitate testing various combinations of lenses, the setup shown in 

Fig. 20 was used.  Note that one leg of the Tx-Rx path was connected via fiber to avoid 

having to perfectly align both paths during the testing stage.  The rational here was that if 

linking could be successfully achieved via a certain combination of lenses for one path, it 

could be later adopted for both.  During testing of optics, the one fiber path served to re-

duce the variables that could prevent a successful link.  With the setup as shown in Fig. 

20, the collimation of the beam was confirmed with an IR viewer. It was observed that 

contrary to the manufacturer’s claim of perfect mating of the fiber with the focus of the 

collimating lens, much manipulation of the fiber connecter was required to get the opti-

mal collimation (as observed by the IR viewer and a makeshift power meter.)  This 

proved to be more of a challenge when attempting to couple the free-space beam back on 

to the fiber.  With a single-mode fiber connected to the receiving optics, this task was 

found to be too time consuming.  In order for the link to work, i.e., sufficient power of 

NA =.16 
Focal length 15.29 

Collimator body 

Single or multimode fiber 

FC connector 



the beam to be harnessed into the tip of the fiber, the fiber tip had to be placed at the very 

focus of the lens with very little tolerance in any dimension x, y, or z.  When a multimode 

(62.5 µm) fiber was used, the focusing was found to be easier.   

 

 
Figure 20. Two media converters setup with one fiber link and a free-space link through col-

limation lenses.   

 

A link was established at a distance of 60 inches on the optical bench.  The laptop 

computer connected to the NPS network via the FSO link reported a 100-Mbps connec-

tion, and was able to browse the internet, transfer files and have all the normal functional-

ity of a computer connected via traditional means. At this point, the fiber optic cable that 

linked the second Tx-Rx leg was disconnected and replaced with an FSO link identical to 

the first link. Again the beam alignment was exceedingly time consuming and difficult.  

Normal network functionality was observed once both beams were aligned, with the 

computer reporting 100-Mbps connection.  The file transfer test was conducted again.  

Figure 21 shows one of the ML6652 devices with both receive and transmit lenses con-

nected.  Although a fully functional FSO link was established over a distance of 5 ft, it 

was on an optical bench, with anchored lenses and under laboratory conditions.  Given 

the difficulty to align the receiver end of the beam, we could hardly call this a workable 
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solution.  However, it was a significant result in that it supported the hypothesis that the 

link distance could be extended with optics, and that a small device could manage to es-

tablish an FSO link at the Fast Ethernet data rate of 100 Mbps.  Also encouraging was the 

fact that the transmitted beam was stable and maintained its collimation. This meant that 

at the transmitter end at least, the collimation lenses were useful.  At this point it was ob-

vious that using a small collimation lens was not a practical way to collect the light beam 

and focus it on the receiver.   

An encouraging discovery was made at this point, enabling further progress.  

While looking at means to solve the limitation posed by the fiber-connected receiver, it 

was discovered that collimated beam could be shined directly at the transceivers’ minis-

cule detector and a link could be established.  Note that the detector diameter is roughly 

75 µm and it is designed to accept a fiber connecter a microscopic distance away from it.  

It was further discovered that establishing a link in this fashion was drastically simpler 

than what was attempted previously.  The effort to extend the link length beyond the op-

tical bench length had to be suspended due to time constraints.   

.  

Figure 21. Collimation lenses shown connected to the ML6652RDK.  One on left connected 
to the transmitter and the one on right is connected to the receiver.     

 

As a final step, one of the transceivers with a collimating lens coupled to it was 

mounted on a tripod and powered up.  Using an IR scope and a graph paper the beam size 

at 50 feet was determined to be well collimated and less than 8 mm in diameter.  A veri-
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fication of a longer distance was not possible due to the limitations of the IR scope.  The 

scope needed near total darkness to view the 1310 nm beam due to the wavelength being 

near the high end of its detection envelop.  Using the same setup and a detector coupled 

to a digital voltmeter, the voltage induced by the collimated beam was measured as a 

function of distance next.  This was accomplished with the detector mounted on a second 

tripod which permitted movement along all three axes.  This test was conducted along the 

basement corridor of Spanagel Hall late at night to avoid interference with regular busi-

ness of the day.  Since the transmitter in use was classified as a Class I device, no ex-

traordinary safety precautions were taken.  First the two tripods, pictured in Fig. 22, were 

aligned at a distance of 10 ft apart.  Constantly observing the voltmeter output, the tripod 

axes were adjusted to obtain the highest possible value on the digital voltmeter, indicating 

that the detector was intercepting the central portion of the laser beam.  This voltage was 

recorded as a baseline value.  Next, a collection lens was placed on the detector, very 

nearly a focal length away from the detector. This was a plano-convex lens with a 25.4 

mm diameter and a focal length of 25.4 mm.  Another measurement was obtained, and 

this was recorded as a baseline value, with collection optics. With the transmitter station-

ary on one end of the corridor, the tripod was moved down in 20-ft increments.  At each 

step the detector was carefully adjusted to obtain the highest possible value. Two read-

ings were taken at each site, with and without the collection optics. The last measurement 

was taken at 300 ft away from the transmitter.  The results are discussed in the next chap-

ter. 

C. SUMMARY 
In this chapter, the design decisions were discussed for each subsystem.  The pro-

totype design steps were outlined along with results.  Some protoboard designs did not 

function as expected and this was thought to be due to unacceptable noise and parasitic 

capacitance. After the modification of a reference design circuit was found to work, we 

tried to improve the performance of the prototype communicator by the use of optics.  

This was only partially successful as it was discovered that the collection optics coupled 

into fiber were extremely hard to align properly.  Subsequently it was discovered that we 

could simply aim the beam into the connection socket that is meant for the fiber optic ca-

ble of the transceiver, to establish an FSO link.  This method was significantly easier than 



with a collimation lens attached to the receiver.  An FSO link was established and tested 

on the optical bench with various combinations of lens.  Finally, a power detection test 

was conducted up to 300 ft from the 1-mW transmitter.   

The final chapter discusses the results we have obtained and the possible direc-

tions for further research. 

 

 
Figure 22. Tripod-mounted transmitter (Left) and photodetector with DVM (Right) 
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IV. RESULTS AND CONCLUSIONS 

This final chapter discusses the results we obtained during the testing phase.  The 

conclusions we may reach, based on these results, and recommendations for further re-

search are also presented.  

A. RESULTS 
The data transfer rates obtained by timing the transfer of two very large files and a 

smaller doc file are shown in Fig. 23. These data were collected during various phases of 

testing. The data collection procedure was outlined on Page 31.  It should be noted that 

this was not a precise measure of the data rate over any connection, as the transfer time 

includes data buffering delays, network traffic routing delays, and the delays caused by 

the reading and writing latencies of the disk drives. However, this method would suffice 

to eventually reach a conclusion on whether the fiber connection or the FSO connection 

introduces discernible delays to Ethernet connections, given that test conditions remain 

reasonably similar.  To this end, we would use the same two computers and identical files 

on the planned data collections.  The uncontrollable variable was the wide, but random 

variations in network speed over a period of time. This is usually caused by instantaneous 

network traffic, or usage.  In order to limit the effect of this phenomenon, the tests were 

done on a holiday.  For the 151-MB zip file, the difference between the average transfer 

speeds was measured to be less than two seconds.  The largest disparity in transfer rates 

was measured to be roughly three seconds for a data transfer of 12.7 MB (for the pdf 

file.)  There was no appreciable difference among transfer rates for the smaller doc file 

either.  For another estimate of the connection speeds, a software program that provided 

the instantaneous connection speed was used.  This program reported instantaneous val-

ues of roughly the same speeds for all three types of connections over a long period of 

time.  There was no user discernible change in internet browsing speeds between the 

three types of links.  Above tests and long term observation of the FSO link led to the 

conclusion that a copper-FSO or copper-fiber media conversion does not add any meas-

urable latency to network links.   
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Figure 23. Average file transfer time comparison. Time axis shown in logarithmic scale for 
clarity.      

 

As a final check, we attempted to interrupt the FSO beam when a file transfer was 

in progress.  A transitory interruption, by moving a hand or other object to mask the 

beam, did not reset the connection nor cause the transfer to abort.  An interruption of 

roughly 12 seconds or greater was observed to cause the transfer to abort.  There was no 

effect on a network connection due to a beam interruption.  After an interruption of any 

length, the link merely reestablished itself.  Streaming audio and video were downloaded 

through the FSO link with no discernible problems. 

Table 2 shows the data obtained by measuring the voltage produced by a photodi-

ode in response to the collimated beam from the transceiver as shown on Fig. 22.  The 

procedure for obtaining this data was outlined in the previous chapter.  A graphical view 

of the same data is shown on Fig. 24.  We may use the following formula to derive the 

optical power from the measured voltage [30].   
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where 0I  is the dark current of the detector, V is the measured Voltage,  is the ideality 

factor of the diode and 

n

( )λℜ  is the responsivity of the photodiode.  We use kT = 0.026 V 

at 300 K.  ( )λℜ at 1310 nm is 0.85 A/W [31].  In order to find the ideality factor of the 

photodiode and a precise value for 0I , a semiconductor parameter analyzer (HP4145B) 

was used.  The resulting data is shown in graphical format in Fig. 25.  Note that the y-axis 

is in logarithmic scale.  The photodiode used was a Thorlabs FGA10 INGaAs high re-

sponsivity with an active diameter of 1 mm [31].   
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Figure 24. Graph of measured voltage vs. distance from transmitter using photodetector.  
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Figure 25. Graph of measured I-V characteristics for the InGaAs photodiode.  
 
 

From this data we may calculate the power received by the photodiode as [30]: 

 
( )
P

P
IP
λ

=
ℜ

 (4.2) 

where PI  is the photocurrent induced in the photodiode due to optical power PP  detected 

by the diode.  Using the I-V curve shown in Fig. 25, PI  was found for each measured 

value of V.  Figure 26 shows a graph of calculated power received vs. distance using this 

method.   
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This result is the most significant of the experiment.  The calculated power at 10 

ft using the measured voltage shows a value slightly higher than this at 1.308 mW, 



slightly higher than the rated 1 mW output of the transceiver.  (Rated power is measured 

as coupled into a single-mode fiber.)  This is thought to be due to higher than the worst-

case coupling efficiency into the multimode fiber being used for the experiment.  

From data shown in Fig. 26 and Table 2, it is reasonable to conclude that, with the 

right collection optics, we can establish communications at this range and beyond (recall 

that the sensitivity of a typical detector is near −30 dBm.)  From Eq. 2.4 we see that the 

received power is proportional to power of the transmitter. Therefore, if a more powerful 

diode could be used in the transceiver, the minimum detectable power could be received 

at a longer range.  Why not simply use a transceiver with a higher powered LD?  The 

problem lies in a safety issue.  In order to minimize liability and keep costs low, manu-

facturers prefer to maintain the class I laser designations for transceivers.  Therefore, they 

are not typically available with larger power ratings than 1 mW (max rating.)    
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Figure 26. Logarithmic graph of calculated power vs. distance 
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Distance 

(ft) 

Voltage      
measured 

with        
detector     

(no optics) 

(mV) 

Calculated 
Power 

(no optics) 

(mW) 

Voltage 
measured 

with 24.5 mm 
lens over      
detector 

(mV) 

Calculated 
Power with   

optics 

(mW) 

10 385 0.307 434 1.308 

20 349 0.101 431 1.202 

40 320 0.042 426 1.045 

60 294 0.019 418 0.831 

80 272 0. 01 408 0.618 

100 256 .006 400 0.486 

120 242 0.004 394 0.405 

140 237 0.003 387 0.326 

160 228 0.0027 382 0.28 

180 217 0.0019 375 0.225 

200 215 0.0018 371 0.199 

220 207 0.0014 369 0.187 

240 202 0.0012 367 0.176 

260 197 0.0011 360 0.141 

280 191 0.0009 356 0.125 

300 189 0.0008 352 0.11 

Table 2.   Voltage measured with a photodiode at 20 ft intervals from the 
transmitter. The power values are calculated, based on the voltage.    

   



In an effort to overcome the difficulties created by the minute receiver  and lim-

ited power, an attempt was made to obtain a custom-designed 1x9 pin transceiver.  Manu-

facturing houses were approached with requests for samples of a device with a higher 

power LD and also without fiber connectors.  Shortly afterwards the author was offered 

some proposals for a custom-designed device that could have been a promising start.   

Time constrains prevented the purchase and testing of the samples offered.  Figure 27 

shows the offered designs.  In the image on the left shows the LD and two choices for the 

receiver, a detector with a built-in lens and a flat window detector. The LD is rated at 7 

mW and the detector at 33 dBm sensitivity.  The package could be plugged in to the 

socket we created.  The center image shows a transceiver with a ball-lens detector.  The 

right image shows the other option, a flat window detector. While these transceivers still 

require slight modifications to accept lenses, they give us more design options. As an ex-

ample, the LD is equipped with a ball lens meant to collimate its output.  We could ob-

serve the behavior of this beam and then use appropriate optics to modify it.  Most impor-

tantly, we now get the access we need to the detector to place optics on it.  

< −

The successful transmission of fast Ethernet data confirmed that the circuitry is 

functional and that, in practice, a low-cost device could be employed as an FSO link. The 

power measurements further established that with optics, the modulated signal should be 

received with sufficient power, at least up to 300 ft as shown.  It is clear, however that 

that the system needs to be optimized before it could be of practical use.   
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Figure 27. Custom-designed 1x9 transceivers offered by a manufacturing house in response 
to internet inquiry.  
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B. RECOMMENDATIONS FOR FURTHER RESEARCH 
The author firmly believes that there is a military application for a small FSO de-

vice.  It need not be an FSO Ethernet link. There may be a valid field application for a 

point-to-point voice link. Modulating a voice signal on FSO is fairly straightforward.  

This may be an area that could be explored by a future research project. The prototype is 

functional and would lend itself well to experiments in power, optics or data speeds.  

More research is needed in the effects of weather on the link as well.  If a practical range 

could be achieved, there may be other applications that could benefit from a portable data 

linking device.   

Further research is needed to find a simple scheme to align the transceivers.  With 

an IR beam, this will always be a challenge.  The author believes this could be done with 

a low power visible laser pointer attached to one of the devices.  Another avenue to ex-

plore might be an aural indication of received power on a low-cost detector.  A conven-

ient and fast method to align the system is crucial to its utility.      
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